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ABSTRACT: Using a real space implementation of the self-consistent field theory, we cal-
culated the morphology and interactions of spherical nanoparticles with radius R, that
are grafted by polymer chains of N monomers immersed in a chemically identical poly-
mer melt of polymerization index P. The calculation shows that, for big particles (R,
> NY2q, with a the segment size), the interactions and density profiles of the grafted
layers are that of brushes at flat interface; While for small particles (R, < N 24), the
interactions and density profiles are characteristic of star polymers. In the case of inter-
mediate grafted chain lengths, that is, R,~N Y24, we found that the grafting density of
the polymers and the radius of the spherical nanoparticles are both important in deter-
mining the structure and interactions of the grafted layers. Our findings suggest possi-
ble ways to tailor the structure and interactions of the nanoparticles to benefit the fabri-
cation of polymeric nanocomposites. ©2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym

Phys 44: 2811-2820, 2006
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INTRODUCTION

It is of great academic interest and industrial
application to graft polymer chains onto surfaces
of nanoparticles or colloids. The grafted polymer
chains, usually called polymer brushes, can pro-
duce interfaces with desired properties and thus
modulate interactions between particles, by tailor-
ing the molecular weight and the chemical species
of polymer chains.'™ Therefore, polymer brushes
have been extensively applied to stabilize colloidal
dispersions and produce polymeric nanocomposite
materials.

The basic properties of polymer brushes have
been intensively studied since the pioneering
work of Alexander® and de Gennes.® For a poly-
mer brush immersed in a melt, the equilibrium
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brush profiles are determined by the competition
between the osmotic pressure, which tends to
swell the brush, and the elasticity of the grafted
chains, which tends to diminish the brush exten-
sion. Therefore, the equilibrium brush profiles
mainly depend on the following parameters: the
molecular weight of the grafted chains, N, and
that of the melt chains, P, the curvature of the
grafting surface, i.e., the radius of spherical parti-
cle, R, as well as the grafting density, o, (which is
defined as the average number of grafted chains
per surface area of the substrate.)’

The most investigated system is the infinite
planar brushes (with zero curvature). Shull stud-
ied the interaction between two planes in a blend
of an adsorbing polymer with one adsorbing end
and a nonadsorbing polymer of the same chemical
type using the self-consistent field theory (SCFT).®
When the molecular weight of the adsorbing poly-
mers N is greater than or equal to that of the non-
adsorbing polymers P (N > P), the interaction
between the two planes is purely repulsive; other-
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wise (N < P), there is an attractive interaction
due to the interpenetration of the opposing
brushes, and the concomitant expelling of the free
chains from the brush layers. Ferreira et al. sys-
tematically explored the parameter space of the
chemically-grafted planar polymer brushes in a
melt.? Their results show that because of subtle
entropic effects, the free chains in the melts are
expelled from the grafted layers, even if they are
chemically identical to the grafted chains, and the
interactions between the brushes can be purely re-
pulsive or repulsive at short distances and attrac-
tive at longer distances. The region where attrac-
tion exists satisfies GNY2 > (N/P)?. However, in a
similar system, Matsen found that there is always
an attractive interaction between the two brushes
immersed in melts, which is ascribed to the posi-
tive interfacial tension between the brushes and
the melt chains.”

Recent experimental progress in polymer brush
coated nanoparticles or nanorods raises the ques-
tion of the curvature effects on the brush interac-
tions. The existing relevant theoretical studies
only considered spherical brushes in small mole-
cule solvents. Lin and Gast found that the interac-
tion of spherical brushes in a molecular solvent is
purely repulsive over a wide range of the radius of
curvature of the spherical brushes, the length of
the grafted polymers, and the grafting density.'!
Wijmans et al. predicted that the interactions
between spherical brushes are far less repulsive
than that would be expected from the interactions
between two equivalent flat surfaces. This is
explained by the greater freedom of the grafted
chains to move laterally out of the widening gap
between the spherical particles when compared
with the chains between flat surfaces.!? However,
Roan and Kawakatsu developed a new SCFT
method to take into account the redistribution of
the segment density along the direction parallel to
the particle surface when the two interacting
spherical brushes approach each other, and pre-
dicted attractive interaction potentials between
spherical brushes even in a molecular solvent.'®

There are rare investigations on systems of
spherical brushes immersed in polymer matrix
with brush core size 10-100 nm and thickness of
about the same size, which is the most relevant to
practical polymeric nanocomposites.'* For slightly
curved spherical brushes dispersed in a melt of
long polymer chains, Hasegawa et al. found that
the interaction potential of the brushes shows an
attractive minimum, which becomes very shallow
at an intermediate grafting density; while at

lower or higher grafting densities, the attractive
interactions become stronger, and therefore, the
particles form clusters within the polymer ma-
trix.'® We studied the interaction between brush-
coated clay sheets in a polymer matrix.'® Our cal-
culation showed that the lateral dimension of the
clay sheets is a new relevant length scale in deter-
mining the structure and interactions of the
grafted layers.

In most of the previously studied systems, the
radius of curvature of the grafted surface is much
larger than that of the polymer chain, and in this
case, the distribution of the grafting ends on the
grafted surface is trivial, and no extra effort is
needed to ensure the homogeneity of the grafting
points. However, when the radius of curvature of
the grafted surface is around the size of polymer
chain, the lateral homogeneity of the grafting
ends cannot be satisfied automatically without
additional treatments. Roan and Kawakatsu
adopted the special initial condition for the graft-
ing ends to achieve the constraint.’® In this arti-
cle, we introduce a Lagrangian multiplier method
to constrain the grafting point distribution in
SCFT and use it to study the structure and inter-
action between spherical polymer brushes in the
melts of the same chemical type.

The formalism of the model is briefly described
(see Model section) with special focus on the
Lagrangian multiplier method to constrain the
grafting point distribution. The results of the cal-
culation are presented and discussed in detail (see
Results and Discussions section). Finally, the
main conclusions are summarized.

MODEL

Self-Consistent Field Theory

The system we considered is composed of two
identical polymer grafted spherical particles im-
mersed in a polymer matrix, as illustrated in
Figure 1. The system is sufficiently large so that
the influence of the brushes ceases to exist at the
boundaries and the melt chains attain their bulk
properties. The bulk is characterized by a con-
stant mean density of monomers ¢, = 1. The ra-
dius of the particles is R, and the closest distance
between them is D. Each of the particles is grafted
with n,/2 polymer chains of polymerization index
N, and the polymer matrix has ng free chains of
polymerization index P. The monomers of the
grafted chains and the free chains are assumed to
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Figure 1. Schematic diagram of the geometry of two
brush-coated spherical particles in a polymer melt. The
system has a rotational symmetry about the z-axis, thus
only a cross section in the rz-plane is drawn. The two
particles are represented by two circles and the grafted
chains are drawn in black and the melt chains are in
gray. Note that R, is the sphere radius, and D is the
closest distance between the two spheres, R is the dis-
tance away from the particle surface.

be chemically identical, flexible with a statistical
length a (Kuhn length), and incompressible with a
volume pg'. The volume occupied by the polymers
is V=N +ngP)po*.

Each of the grafted polymer chains and the free
polymer chains are modeled as Gaussian chain
that is described by a continuous curve R,(s) or
Ry(s) representing all possible configurations of
the macromolecules. The variable s increases con-
tinuously along the length of the chain. For
grafted chain, s = 0 at the particle surfaces and
s = N at its free extremity, the grafted extremity
is named as “grafting end” in this article. In the
case of free polymer chains, the two extremities
are identical, and s = 0 at one of the extremity
and s = P at the other extremity. For Gaussian
chains, the possibility density functional for a
given configuration is of the Wiener form:

N 2
P[R,(-)] « exp [_Z%LZ/O ds [6}28(8)] ] (1)

and P[Ry(-)] can be given by a similar expression
with N replaced by P. Therefore, the monomer
density operators (¢,,¢5) and the grafting ends
density operator (¢,_,) can be defined as
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Ty N
$.(x) =py" Y [ dsdlr—R,(s)  (2a)
=1
$p(r) =po' D ; dsolr — Ry(s)]  (2b)
p=1
(bso = /f’olzfS =0)] (2¢)

The surfaces of the spherical particles where the
polymer chains are tethered on are denoted as r..
The distribution of the grafting ends on the parti-
cle surface is specified by the local grafting density
o(r.), which means the area fraction of surface
occupied by the grafting end at point r.. We can
also define a volume fraction grafting end distri-
bution and have the relationship o, (r) = ka(r.)
o(r-r,), where & is a trivial constant set to 1 in this
article. Therefore, n, = [dro(r) = [dr.o(r,).

The canonical partition function of this system
can be written as:

- ﬁ/DRZ(-)P[R
x [, 0001 — ¢, — qs,;xH 3(cy — eg)  (3)

where DR, (-) and DRy (-) denote the functional
integration over all possible configurations of the
chains, and the first 6 function selects the configu-
rations satisfying the local incompressibility con-
straint of the melts, and the second ¢ function
ensures the distribution of grafting ends satisfies
certain constraints. We had just neglected all the
interactions between the particles and the interac-
tions between the chains and the particles.
Because of the fact that the grafted polymer
chains and the free chains are chemically identi-
cal, there is not an explicit expression for the
interaction potential between the grafted chains
and the free polymer chains.

Using the Hubbard-Stratonovich transforma-
tion, the canonical partition function can be
rewritten as

mg
<11 / DRy()P[R; ()]

Z:/ D¢, D¢sDw,DwpDE exp{—po}  (4)

with the functional

= p, / dr{w, (1), (r) + wy(r)dy(r)

+ ()1 = §,(r) — Py(r)] + n(r)o,(r)}
—n, In(Q,/V) —ny In(Qs/V) (5)
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where § = 1/kgT with the Boltzmann constant kg
and the temperature 7. ¢, (r), ¢; (r), and ¢s_o (r)
are the local volume fractions of the grafted and
free chains, and the density of the grafting ends,
respectively. w, (r) and wg (r) are the correspond-
ing self-consistent fields, and the pressure field
&(r) ensures the local incompressibility of the sys-
tem, and the Lagrangian multiplier field n(r) con-
strains the distribution of the grafting ends. The
single chain partition functions @, and Qg are
defined as

Q- / DR, ()P[R,()] exp{—7[R,(s = 0)]

N
—/ dswa[Ra(s)}}:/ drg,(r,N) (6a)
0

@ = [DRyPRyOexp{ - [ ooy [DRy(5) |
- / drqy(x,P) (6b)

where the canonical statistical weight of the sub-
chain ¢(r,s) represents the probability of finding
segment s at position r.!” g(r,s) obeys the modified
diffusion equations with proper initial condition.
For example, for the grafted chains,

0q,(r,s) a?
S AR

Wy(r)g.(r,s)  (7)
with the initial condition for eq 7 is ¢g,(r,0)
= exp[—n(r)]. Because the two ends of the grafted
chains are distinct, a second end-segment distri-
bution function, g,(r,s), is needed. It satisfies eq 7
with the right-hand side multiplied by —1, and
the initial condition, q;(r,N) = 1. For the free
chains (f chains), the two ends are identical,
therefore, q};(r,P —s) = qp(r,s) and the equation of
qp(r,s) is similar to eq 7 with the initial condition,
qpr,0) = 1.

It is impossible to complete the functional inte-
gral to get the partition function, so we will take
the saddle point approximation,

ﬁF ~ — anmax = ﬁ@min(wou wp, QSW d)[jv 57 7[) (8)

Minimizing the functional in eq 5 with respect to
the six variables (w,,wg¢,,¢4,¢,m), leads to a set of
equations:

w, (r) = £(r) (%)

wp(r) = ¢(r) (9b)
o dsq,(r,s)ql(r,
RS e

L JY dsqy(r,s)qs(r,P —s)

Pp(r) = py ng T drqy(r,P) (9d)
T

Peo(r) = po 1 % (9e)

1- (»boc(r) - ¢ﬁ(r) =0 (9f)

Gv(r) - (bs:() (I‘) =0 (gg)

eqs 9a—-9¢g can be solved in a self-consistent way to
determine the free energy of systems.'%'%19 In
practical calculations, the constraints ¢, (r) + ¢z
(r) =1 and ¢4_o(r) = 0, (r) are realized by choos-
ing the pressure field ¢ and Lagrange multiplier
field 7 according to

<(r) = So[1 = ¢, (r) — ¢p(r)] (10)
n(r) = mo[¢s—o(r) — 0y(1)] (11)

where &, and 7y are trivial constants, and the
resulting density profiles and energies are inde-
pendent of their particular values.”

The interaction free energy for the two brushes
separated at a distance D, U (D), is defined as

UD) = BIF(D) — F(c0)] (12)

where the reference state is taken to be the state
where the two spherical brushes are separated far
enough so that the monomer density distributions
are not altered even when they are separated further.

Numerical Method

Since the system has rotational symmetry about the
axis that passes through the two centers of the sph-
eres, it is convenient to perform the calculations in a
cylindrical coordinates, as shown in Figure 1. Because
all the variables have no azimuthal dependence, we
solve the SCFT equations in a 2D coordinate (r, z).
The modified diffusion equations can be written as

d4(r.2.5) _a? [a2q<r,z,s> 10q(r,2,5)

s 6 022 r or
P2 gz (13)

where ¢ can be q,, q;, qp, and w can be w,, wz We
adopt the hard wall boundary condition on the

+
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Figure 2. The density profiles for isolated spherical
brushes at various particle radii with N =P =50 and ¢
=0.30.

sphere surface, that is, q(r € €,s) = 0, where € is
the space occupied by the particles, and the no-
slope boundary condition on the outer boundary of
the system, both in r and z directions: dq (r =
0,z,8)/0r = 0; 0q(r = L,z,8)/0or = 0; 0q(r,z = 0,8)/0z =
0; 0q(r,z = L,,s)/0z = 0. Correspondingly, taking
the single chain partition function @, as an exam-
ple, the integration of any quantities in polar coor-
dinate is evaluated as

R, = /qa(r,z,s)qi(r,z,s)andrdz (14)

In fact, to fully exploit the symmetry of the sys-
tem, we chose only a quarter of the whole system
to carry out the calculations with the above men-
tioned boundary conditions. The size of the system
is chosen such that L, > R, + NY2q and L, >
2R, + N Y24) to avoid finite size effect.

The SCFT equations are solved using a numeri-
cal real space iteration method. The algorithm
starts with initial fields. Using a Crank-Nicholson
scheme and an alternating-direction implicit
(ADI) method,?° the diffusion equations are then
integrated to obtain g,(gs) and q;, for 0 <s < N(P).
The right-hand side of eqs 9¢c and 9d are evaluated
to obtain new expressions for the volume fractions
of the different species. The final step is updating
the potential fields using eqs 9a, 9b, 10, and 11 by
means of a linear mix of new and old solutions.
These steps are repeated until the incompressibil-
ity of the system satisfies |1 — ¢, (r) — ¢p (r)| <
1077, and the free energy change at each iteration
is reduced to 107%. For details of the algorithm,
the readers are referred to Ref. 16.
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RESULTS AND DISCUSSIONS

In this section, the structure and the density pro-
file of the grafting chain are described and then
the interaction between the brushes is discussed
in connection with the morphology. To emphasis
the effects of variations of grafting density and
particle radius, we set N = P = 50 and assume the
homogeneous grafting density for all the data and
results presented if without additional specifica-
tion.

Morphology

First, we will discuss how the particle radius and
grafting density affect the structure of an inde-
pendent brush. Figure 2 shows the monomer den-
sity profiles for ¢ = 0.30 with different radii of the
sphere, R,. These profiles demonstrate an obvious
influence of the sphere radii on the structure of
the grafted chain layer. When R, > N Y24, the
monomer density profiles are the parabolic, which
are characteristic of polymer brushes at a flat
interface; when R, < NY2q, the density profiles
are the power law decay, which is typical of a star
polymer. A similar behavior has also been
observed in a spherical brush in solutions,™ in
which by decreasing the core curvature, the struc-
ture of grafted layer was considered to change
from those in star polymers to planar brushes. In
the present calculations, however, without any
further approximation, with the continuously
changing radius of the spheres, the similar struc-
ture variations are predicted for brushes in melts.

1.0';\&1 \ 4 vsv\v

S \v\ —m— 5=0.025

08\ O\, v —e—5=0.10

o\ \ \ —A—05=0.20
I \ —v— =040

&d

0.41
0.21
0.0~

Figure 3. The density profiles for isolated spherical
brushes at different grafting densities with R, = 15a
and N =P =50.
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The grafting density of the polymer chains also
alters the structure of the spherical brushes. As
an example, we illustrate in Figure 3 the mono-
mer density profiles of the brush at different graft-
ing densities with B, = 15a. By increasing the
grafting density, the change of the density pro-
files, i.e., from the parabolic to the power law
decay, is observed. More specifically, when the
grafting density is low, oNY? < 1, i.e., ¢ < 0.14
the free melt polymer chains penetrate the brush
(“wet brush”); when the grafting density is high
enough, cNV2 > 1, i.e., 0 >> 0.14, the melt chains
are expelled from the brush (“dry brush”). The
interface between the brush and the melt, how-
ever, is not sharp; the melt penetrates over a dis-
tance inside the brush. This phenomenon arises
as a balance between two effects. On the one hand,
the penetration of free chains into the brush is
entropically favorable; on the other hand, the melt
penetration implies an extra stretching of the
chains in the outer fringe of the brush and a sub-
sequent cost in the elastic free energy.

We have discussed the structure of an isolated
brush, which is true for brushes at great separa-
tion D >> Na. When two brushes are close to each
other, apparently, the interaction between the two
spherical brushes will alter their structure. In
Figure 4, the distributions of the monomer density
for brushes at different distances D with R, = 15a
are illustrated as an example.

For convenience, the part of each sphere sur-
face facing each other will be referred to as front
surface and the rest part as rear surface, and cor-
respondingly, the brushes grafted on the front
and rear surfaces are named the front and rear
brushes, respectively. From Figure 4, we know for
the value of a(= 0.50), the brushes are well in the
“dry” brush regime (where ¢NY2 = 1). When the
two spheres are far away from each other, no
obvious structure change is observed. The melt
polymer chains occupy the space between the sep-
arated front brushes, and one finds that the mon-
omer density of the grafted chains is almost zero
in this area. As the distance between the spheres
decreases and reaches some value where the
fringes of the two front brushes start to touch
each other, the melt chains being expelling out
from this area. If the distance of the two spheres
is further decreased, the two grafted layers start
to compress each other, and one can see that
almost all the free chains are expelled out. As for
the density profile of the rear brushes, it remains
almost unchanged as the two spheres approach
each other.

(b) D = 30a

(c) D =264

CEREY

Figure 4. Distribution of segment density of two
approaching spherical polymer brushes with R, = 15a,
N = P =50, and ¢ = 0.50 and different distances of the
two spheres, D. The segment density in the white region
is higher than that in the dark region and the dark
circle in the center of the white region represents the
spherical core of the particles. From top to bottom, the
closest distances between the spherical brushes are
48a, 30a, 26a, and 16a, respectively.
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Figure 5. The interaction free energy of the two
brushes as a function of the distance between them with
various particle radii at N = P = 50 and ¢ = 0.30.

Interaction Between Spherical Brushes

In Figure 5, we present the interaction free energy
U(D) of the two spherical brushes in a melt as a
function of the distance D between them, for dif-
ferent values of the sphere radius R,. The five
curves plotted in Figure 5 correspond to the five
values of the sphere radius R, = 20a (circle), R,
= 30a (triangle up), R, = 50a (triangle down), R,
= 70a (diamond), and R, = 90a (triangle left).

As we expected, at small brush separations
there is a repulsive part in the interaction free
energy for all the five cases because of the
excluded volume effect between the grafted poly-
mers. While at large brush separations, there is
no interaction between the brushes. Surprisingly,
at intermediate distances (roughly at the contact
distance of the fringes of the two brushes), how-
ever, the interactions are attractive for relatively
large spheres. More specifically, it is observed that
for R, > N V24 at intermediate distances the
interactions are attractive; however, for R,~N V2q,
there is no observable attraction. In fact, for R, <
N2, the structure of the grafted layers appears
like that of star polymers, and only repulsion is
possible. Therefore, our SCFT calculations show
that the radius of the spheres is indeed a new rele-
vant length scale in the problem, which we consid-
ered here, and decreasing the radius of the
spheres can cause a substantial change in the
interacting force between the spheres.

Increasing the grafting density has the similar
effect as to increasing particle radius, as is pre-
sented in Figure 6. The four curves plotted in Fig-
ure 6 correspond to the four values of the grafting

Journal of Polymer Science: Part B: Polymer Physics
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density for R, = 15a at ¢ = 0.2(circle), ¢ =
0.4(triangle up), ¢ = 0.5(triangle down), and ¢ =
0.6(diamond). There is an attractive part in the
interaction free energy if ¢ is larger than a certain
value. Therefore, we conclude that the appearing
of the attractive interaction can be caused by
increasing either the grafting density or the
sphere radius.

To identify the origin of the attractive interac-
tion, the total free energy of the system is divided
into two parts: the contribution from the grafted
chains I, and that from the free chains I, respec-
tively:

;i_gw:*ﬂo / drwu(r)%(r)mln{Qx/V} (15a)

kI]:—lzf = —po/drw/; (I‘)(f)[; (I‘) - nﬂln {Qﬂ/v}

(15b)

We take the case with B, = 15¢ and ¢ = 0.5 as an
example, which is shown in Figure 7. Several im-
portant features are observed: (1) It is clear that
in most of the interaction range presented, since
the grafted chains are not extremely deformed,
the contribution from the melt chains Fy domi-
nates the total free energy F' (= F, + Fy). (2) At
the intermediate distance between the spherical
brushes, the free energy of the free chains shows a
minimum. The reason is that, before the fringes of
the two front layers compress each other too
much, moving closer to each other leads to a
larger space for the free chains, which is entropi-

0.0050

0.0025 L {

0.0000+4

-0.0025 r T r T r
15 20 25 30 35 40 45

Dra

Figure 6. The interaction free energy of the two
approaching brushes as a function of the distance
between them with different grafting densities at N = P
=50 and R, = 15a.
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0.0250

0.0125+

0.0000

-0.0125
22 26 30 34 38

Figure 7. The interaction free energy and the two
contributions from the grafted and free chains with
R,=15a, N =P =50and ¢ = 0.50.

cally favorable. As the two front layers are further
compressed, however, the free chains immersed in
the layers are stretched,?' which is entropically
unfavorable and thus leads to an increase of the
free energy. (3) For the grafted chains, there is
also a minimum at the intermediate distance of
the two brushes. We ascribe the lowering of the
free energy to the redistribution of the grafted
chains (not the grafted ends) because of the spher-
ical geometry, which obtains entropy; while fur-
ther decreasing the distance between the two
spheres, the grafted layers are too much com-
pressed, resulting in great lose of entropy and
hence increasing the free energy. We note that the
redistribution of polymer segments to acquire
additional configurational entropy was also ob-
served in spherical polymer brushes in small mo-
lecular solvents.'® (4) The interesting fact is that
the distance at which the minimum of the free
energy of the grafted chains appears is shorter
than that of the free chains. As the minimum of F,
is reached, the value of Fy is already very high,
which explains why only one minimum is ob-
served in the total free energy. Finally, we would
like to note that when the two spheres are moved
very close (which is not shown in Figure 7), the
two front layers are extremely compressed, thus
the free chains are all expelled from the front
layers, as expected, the free energy contribution
from the grafted chains F, dominates the total
free energy.

Hence, we think the attractive potential arises
mainly from the free chains in the melts rather
than the grafted chains, which agrees with the
opinion of Hasegawa et al.'® In their work, the

particles were so big that the grafting surfaces
could be taken as planar surface. However, our
SCFT calculations show that the radius of the par-
ticles is indeed a new relevant length scale in the
problem, which we consider here, and decreasing
the radius of the spheres can cause a substantial
change in the interacting force between the par-
ticles. In addition, their theoretical works were
carried out in a one-dimensional space, and thus
the redistribution of grafted chains to acquire ad-
ditional entropy could not be taken into account.

Figure 8 presents the distances at which the
minimum of the interaction free energy is
attained for various values of ¢ and R,. Since the
effective attraction between the brushes results
from the replacement of the two unfavorable
brush-melt interfaces by a single brush-brush
interface, the distance at which the attraction
attains its maximum value (denoted by D.;,) is
roughly the sum of the two equilibrium brush
heights (marked by &), that is, D, oc h oc aNo.
Indeed, it is seen from Figure 8 that all the curves
are straight lines. Furthermore, the slopes of the
lines appear to be dependent on the value of R/
NY2q. For high enough values of R,/N V24, the ra-
dius is not relevant in determining the peak posi-
tion. However, decreasing the value of Ry/N"%a
decreases the slope of the lines, which means that
in the intermediate regime (R,~N"?a) the radius
of the spheres is relevant and the peak position is
affected by this length scale.

We note that in Ref. 15, a similar system was
investigated by a mean field calculation and an
optimum grafting density giving the least depth of
the attraction was found. In fact, the optimum
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Figure 8. The location of the minimum of the interac-
tion free energy (D) as a function of the grafting den-
sity ¢ for different particle radii R,.
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grafting density in Ref. 15 comes from the balance
between two different interactions: one is the van
der Waals interaction between the spherical par-
ticles, which is always attractive (especially at
shorter distances); the other is the interaction
caused by the grafting and free (matrix) polymers,
which is repulsive at short distance and attractive
at longer distance, depending on the grafting den-
sity, the particle size, and the free chain length.
However, to simplify the problem and emphasize
the effect of grafting, the van der Waals interac-
tion is not considered in the present article, thus
there is no optimum grafting density found. Con-
sidering the van der Waals interaction is trivial,
and we expect that there must exist an optimum
grafting density that gives the least depth of the
attraction, since the interaction caused only by
polymer grafting (see Figure 6) behaves similarly
to that calculated in Ref. 15.

Migration of Grafting Ends

In the above calculations, we ensure the fixing of
the grafting ends by iterating the potential =(r).
Such constraint is necessary to consider spherical
brushes with fixed grafting density. On the other
hand, if we remove the constraint, that is, setting
n(r) = 0, we can demonstrate how the grafted ends
migrate with different separation between the
brushes, which reflects the interaction between
the grafted polymer chains.

To show the redistribution of the grafting ends
more clearly, we introduced a new variable y(r.) to
measure the degree of redistribution, which is
defined as:

d)s:O (I‘c) |D
$s—0(Tc)|p—oe (16)

y(re)

It is the ratio the grafting density at the same
position on the surface of spherical particle when
the separation between the two particles is D to
that when the separation is far away enough. It
reflects the redistribution of the grafting ends
when two brushes approach. If its value is closer
to 1, it means that less redistribution occurs.

In Figure 9, when the approaching spherical
brushes with R, = 15a at different separation, the
migration of the grafting ends is illustrated. At
the separation (D = 30a) where the interaction
free energy minimum occurs, we can find that the
redistribution of the grafting ends is unnoticeable.
However, when the spherical brushes is approach-
ing closer (in (b) D = 22a, and in (¢) D = 20a), the
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using y(r.), when two spherical brushes approaching each
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redistribution of the grafting ends become more
greater, the grafting ends migrate away from the
front surfaces laterally, eventually to the rear sur-
faces.

CONCLUSIONS

The morphology and interaction of brush-coated
spheres immersed in a polymer melt have been
systematically analyzed by the real space SCFT
algorithm, with special focus on the grafting den-
sity ¢ and the size of the spheres R,. Because of
the subtle entropy effect, the interactions between
the two spherical layers show an attractive part
by varying either the grafting density ¢ or the ra-
dius of the spheres R, at the fixed polymerization
indexes of the grafting chains N and the matrix
(free) chains P. The free chain exclusion and the
grafted chain redistribution are responsible for
the appearance of the attractive minimum in the
interaction energy of two brushes immersed in a
chemically identical polymer melt.

It is straightforward to extend the present
model to other complicated yet still realistic situa-
tions, for example, if the grafted chains and the
matrix chains are chemically different, either in-
compatible or attractive, the structure and inter-
action of the grafted layers are greatly influenced.
In conclusion, the present SCFT model bridges
the gap between the existing models for brushes
grafted on flat interface and stars of polymer
chains tethered to a central microscopic core. Such
a model would be useful to investigate the struc-
ture and phase diagrams of the experimental sys-
tems such as self-assembly of grafted nanopar-
ticles immersed in polymer matrix, colloidal stabi-
lization in a polymer solution, and wetting of
protected surfaces by polymeric materials. The
findings may have various implications for creat-
ing novel polymeric nanocomposites.
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